
NA WorkSheet Developer’s Guide

July 4, 2006

1 Introduction

1.1 About the NA WorkSheet

The NA WorkSheet is a collection of numerical algorithms organized into
one place. The worksheet attempts to create an easy to use interface that
can quickly be used to carry out numerous numerical analysis algorithms. A
selected algorithm once executed in the worksheet will give a result and inter-
mediate data if so desired. The NA WorkSheet also incorporates a graphing
function and some limited import and export of data.

1.2 General Information

Developers can find general information about becoming a contributor in
the SourceForge site project’s forum under Developers General. Posts can
be made here by the public and will be responded to if they have to do
with questions about becoming a developer. Developers may choose to con-
tribute by taking on an open task or discussing with an admin a new fea-
ture/enhancement. Once a contribution has been made then the individual
will be added to the project as an official developer. An official developer
will have open access to the project’s CVS repository and have their name
included as such in the next release. If you decide to take on an open task
and have questions please ask. The NA WorkSheet project is oriented around
various numerical analysis techniques, if you do not have some background in
this area then it will be hard for you to contribute. The project will though
have some openings for other more general tasks and Java code development
that is not so orientated around numerical analysis.

1



2 Technical Overview

2.1 Main Classes

The NA WorkSheet is comprised of five main classes. These classes general
constitute the user interface and control of the worksheet.

• NumericalWorkSheet - The main JApplet/JFrame.

• MainInputPanel - Equation input, algorithm selection, and execution.

• MethodPanel - Content pane for the algorithms’ input panels.

• GraphPanel - Equation/data plotting.

• OutputPanel - Algorithm output, evaluation, and graph control.

Several other classes are included in the main source code that are re-
ally just off shoots of the five main classes. Three of these are adapters for
the GraphPanel. Any processing of the mouse or keyboard input events are
handled here and routed appropriately. The WorkSheetJMenuBar, About-
Dialog, and HelpFrame all have to with either setting up the worksheet’s
main menu bar or creating context for the menu bar. Three other classes,
ExecuteApproximation, MainInputPanelUpdate and MethodPanelUpdate,
house methods that either help switch the worksheet when choosing algo-
rithms or execute the algorithm. Two of these classes in particular will need
to be edited anytime a new algorithm is added to the worksheet. Greater
detail will be given later with regard to those edits. One other class is include
with the main grouping, but is presently not being used. The class is the
WorkSheetMouseAdapter.

2.2 Approximation Classes

The approximation classes are the actual algorithm objects in the worksheet.
They might also be referred to by some as a package group. All the algo-
rithms are not stand alone objects that can be instantiated. The constructors
do not provide that ability generally. A couple of the algorithms are created
partially in this way because they are called upon to help other approxima-
tions with their execution. This is a feature that might need to be corrected

2



in the future.

The approximations come into existence for only the during of the ex-
ecution of the algorithm. Once they have completed their execution and
have provided output they are nulled out for garbage collection. An ap-
proximation algorithm for the worksheet should generally follow the sample
Algorithm Template given in the docs section of the project. The algorithm
class should have at lease three main methods:

• getCheckData - Obtains input from the algorithms input panel and
checks that data.

• processData - The actual algorithm process and output.

• main(ALGORITHM NAME) - Method that is called by the worksheet
to instantiate the object.

All algorithm classes will need an associated ID that is used to coordinate
with the OutputPanel for displaying any results that have been generated.
The MethodPanelUpdate holds the sequence numbers for the algorithm IDs.

2.3 Approximation Panels Classes

The approximation panels are independent JPanels that each algorithm class
uses to obtain its input parameters. The panels are part of a cardlayout in
the MethodPanel. The card selections are made through the MainInputPanel
radio buttons and algorithm type combobox. Each algorithm accesses its as-
sociated input panel through its getCheckData method. Each approximation
input panel should provide methods to getData, clearTextFields data, and
getStateCheckbox. The latter is used to determine the output of intermedi-
ate data during the execution of the algorithm.

2.4 Expression/Function Classes

The Expression group of classes comprise the equation parser that is used
to evaluate values in the function provided by the Equation for Analysis.
Some of the algorithms use this parser, others do not. Any equation that is
graphed will use this set of classes to evaluate points in the plot.

3



The Function classes are the various mathematical operations that can
be included in an equation. These include trigonometric, and many more
standard features that might be used in evaluating an expression.

2.5 Utilities Classes

The Utilities classes in the NA WorkSheet are miscellaneous methods that
are used by many of the algorithms. The methods are recurring in natural
throughout the processing of data in the worksheet.

• NA Utils - Several class methods that perform calls to the expression
parser, multiply functions, chop data, string manipulation, and grid
bag constrains. This class extends the NumericalWorkSheet class.

• ReadDataFile - Used by several of the algorithms to import data. The
class is most often called directly from an approximation’s getCheck-
Data method.

• TextAreaSort - Algorithms use this class to tokenize the input string
obtained from its associated input panel textarea. The class returns a
string array that holds not only the data, but also information about
this data.

• TextFieldSort - The TextFieldSort class performs the same function as
the TextAreaSort except with textfields in the input panels.

2.6 Legendre Classes

The Legendre classes are used to perform the creation of a Legendre table of
roots and weights that are used in the Gaussian Quadrature.

3 Source Code Development

3.1 Tools

Various ways can be used to develop code for the project. Each person
is going to have personal preferences in tools and methods to create code.
An outline will be given here to get you started in this direction for code
deployment at the SourceForge site.

4



These days most programmers use some kind of IDE, integrated develop-
ment environment, to coordinate the writing, compiling, testing, and packag-
ing of software programs. The NA WorkSheet was created with the Eclipse
IDE. Eclipse is an open source tool that can be found on the Internet at
http://www.eclipse.org. The files in the CVS, concurrent version system, for
the NA WorkSheet project can be checked out and immediately ported into
an Eclipse project. Just place the files in a known directory on your system
and create a new project in Eclipse pointing at that directory. Eclipse comes
with an excellent help document that can get you aquatinted with the tool’s
functionality.

In order to get the NA WorkSheet source code files on your system I
recommend a manual approach. There are some more efficient tools that
can help this process like WinCvs, which is available on SourceForge. I use
though the PuTTY ssh, secure shell, client to log on to the SourceForge shell
server. The project files than can be checked out from the CVS repository
into your home directory. Once the project files are in your home directory
than they can be downloaded with a standard ftp program like FileZilla or
WinSCP. Both of these programs are also open source software that again
are available at SourceForge.

Recommended Tools

• Eclipse - IDE http://www.eclipse.org.

• PuTTY - SSH client http://www.chiark.greenend.org.uk/ sgtatham/putty/.

• FileZilla or WinSCP - FTP open source programs at SourceForge.

3.2 Development Cycle

The development of code general follows a cyclic pattern. A project will
be setup in your IDE. Once the project is established then source code will
be created, compiled, and then executed. A review will then be performed
to determine if an expected behavior is obtained. If so your finished after
maybe some more testing. Ha! If only we were all so good. Generally the
expected behavior will not be obtained so modifications will need to be made
to the source and the process will start all over again. Once a satisfactory
result has been obtained though, then the code should be committed to
the CVS repository. At this point other developers might also have been

5



working with the code so an update should be performed on your working
directory source. If no other modifications conflict with the files that you are
updating then commit your changes to the CVS. Conflicts should be resolved
by communications with the development team.

The cyclic development pattern described above, requires some discipline.
Generally local files should be committed only after some certainty is achieved
in accomplishing some predefined goal or task. At the same time commits
to the CVS should not be delayed so long as to make one uncertain about
what exactly is being committed. Notes taken between long commit times,
can help to remind you of exactly which files you have modified. Use these
notes appropriately. Focus only on source code files that you need to edit
to achieve your goal or task. Please do not make a hay day1 of the project
source code files.

3.3 Getting Started

3.3.1 CVS

In order to get the NA WorkSheet files on your system you should get to know
CVS at the SourceForge site. When you signed up as a register user with
SourceForge an account was created with the Project Shell Server. Access to
this account can be obtained through a ssh, secure shell, client. A common
one that is freely available is PuTTY. The address for the SourceForge shell
server is shell.sourceforge.net. When you connect up to the shell server you
will be in a UNIX type of OS environment. All commands take place in a
command prompt medium. Some common ones are:

• pwd - Present working directory.

• ls - List current directory contents.

• cd - Change directory, just like in DOS.

• cp - Copy file, or files.

• rm - Remove files/directory. Careful there is no trash can on this
system.

1If you do not know what a hay day is go get a pitch fork and move a pile of hay from
one place to another. It can get messy especially if its windy.

6



• man ”Command” - Help information on a command.

The NA WorkSheet project files can be created in your home directory, by
checking out a working copy from CVS. If you are not yet a developer than
you can do so anonymously from the pserver. At the shell console type in
the following command when logged into the SourceForge shell server:
”cvs -z3 -d:pserver:anonymous@na-worksheet.cvs.sourceforge.net:/cvsroot/na-
worksheet checkout na-worksheet3.0”
In your present working directory you should now have a directory named
na-worksheet3.0 with all the files from the CVS repository. In the future
the only part of this command that might change is the module name, na-
worksheet3.0. A check of the CVS files for the project can be done via a web
browser at the project’s home page with SourceForge. The top directory will
always be the module name. If there is more than one top directory than
consult with an admin to understand which branch of the source code you
should use.

An anonymous checkout of the NA WorkSheet project files will not allow
you to commit any changes back into the CVS repository. Inform an admin of
your desire to contribute source code and after a review someone will commit
those changes for you. Once you have made a contribution then you will be
assigned as an official developer. As an official developer you can then make
updates yourself to the project’s source code.

A developer, needs to checkout the project’s source code from the CVS
repository in a slightly different way. First remove any remnants of the
anonymous checkout by using the remove command. At the shell console
window type in the command, ”rm -r na-worksheet3.0”. Then checkout the
CVS project files with the command,
”cvs -z3 -d:ext:YOURUSERNAME@na-worksheet.cvs.sourceforge.net:/cvsroot/na-
worksheet checkout na-worksheet3.0”
A password will be required this time to checkout the files, use your registered
user password.

3.3.2 Downloading the Working Project Code

The working directory of the project source code should now be in your home
directory with the SourceForge shell server. These files can be downloaded
via a ftp client. The WinSCP client tool can do this for you. The address for
the connection to the SF shell server is shell.sourceforge.net. Use the SFTP,

7



port 22, feature with WinSCP to get the files on your local system. The ftp
client Filezilla can also be used for this purpose. A couple of the files that
will be needed by the Eclipse IDE are normally hidden on a shell account.
Any file starting with a period are hidden. Make sure you download the
.classpath and .project files if you are going to use Eclipse. Now that a copy
of the project’s source code is on your local system you can begin to develop
code with a chosen IDE.

3.3.3 Developing Code

The developing of code for the project can be done by choosing a task desig-
nated by the NA WorkSheet team or altogether independently. If you would
like to enhance or create a new feature feel free to do so. Any improvements
to the worksheet is appreciated. The goal of the NA WorkSheet from the
beginning was to create a easy to use interface that could execute numerical
algorithms that were presented in a academic environment. Java was chosen
because it allowed the software to be available as a web applet and a more
versatile application on a multitude of platforms. The NA WorkSheet was
not created to compete with commercial applications along the same lines,
but to a limited audience of educators and students. It so happens though
that the application might be used outside of this context to solve a limited
range of problems.

3.3.4 Source Code Inclusion

Once code has been developed, then to be included with the project’s CVS
repository it needs to be made available. If you are not yet a developer e-mail
an admin to inform the team of a wish to contribute code, hopefully you will
already talked with the team about such a contribution. Source code files can
be e-mailed to an admin via a standard client which supports attachments.
The SourceForge messaging script does not support attachments. A paste
would have to be made into the text body. The e-mail address for and admin
will be available from the project’s SourceForge page or the home web page.

If you are a developer than the source code you have created can be
uploaded directly to your working directory at the SourceForge shell server.
Just use the WinSCP or Filezilla programs to do so. The WinSCP tool
provides a easy way to compare your local system files to the remote location.
In this way you should be able to easily identify files that have been modified.

8



Of course you should already know this, but it serves as a good sanity check.

3.3.5 Updating and Committing Code as a Developer

An official developer for the project should be able to commit code to the
CVS repository without the help from the team. SourceForge provides doc-
umentation that can help you get starting using CVS. Look under the docs
section of SourceForge to find this documentation. The basic commands
that you should become familiar with are update, add, and commit. All
these activities will be performed on your SourceForge shell user account so
use PuTTY to login.

With multiple developers working on a project an update should be per-
formed periodically to see if others are changing code that might compromise
your efforts. Do an update before you commit especially if you are working
with existing files. If you are adding files then the importance lessens. To
perform an update of the entire module change to the working module direc-
tory, ”cd na-worksheet3.0”. Execute the the CVS command ”cvs update”.
CVS will cycle though the project’s repository making an comparison of your
working copy to its own. Any differences will be highlighted. The update
command can also be used to just make an adjustment to a single file or
directory in the module. See the documentation for CVS, or try ”info CVS”
when at your shell console account. ”q” quits this latter.

Now to actually make an addition to the project’s source code repository,
use either the add or commit command. If you are adding a new class then
make sure the file is in the appropriate folder and enter ”cvs add ’CLASS-
NAME.java’”. CVS will make the note of the addition and inform you of
the need to make a commit to finish the inclusion of the file into the repos-
itory. So to finalize the operation type in the command ”cvs commit -m
’MESSAGE ABOUT THE COMMIT’ ’CLASSNAME.java’”. The -m option
should be used to give others a brief idea of what modifications were made
to the file. Please see the documentation section to gather more information
about recommended requirements about log messages. The commit option
can be used to modify more than one file or an entire directory, please see
the documentation.

9



3.4 Approximation Algorithm Creation

The creation of an algorithm class is relatively easy. The difficulties normally
arise in the processing of output data and obtaining input. If the input vari-
ables are few than the input can normally be taken directly from the input
panel for the algorithm. If the input requirements are say for a linear system
solver than it would be tedious for the user to input a large number of vari-
ables and input should be obtained from an import option also. Consider
these aspects when creating your algorithm.

The steps given below can be used as a basis to incorporate a new ap-
proximation into the worksheet. Once you have created the algorithm and
input panel classes and would like help in integrating it into the worksheet
please ask.

1. Follow the given Algorithm Template sample using it as basis to con-
struct your class.

2. Create an input panel using the Algorithm Input Panel Template sam-
ple. If this sample does not meet your needs then look for another that
relates more to your requirements.

3. Edit the MethodPanel class to include your approximation’s input
panel in the CardLayout.

4. Edit the MainInputPanel class to create a new radio button for your
algorithm in the appropriate category.

5. Edit the MethodPanelUpdate class so that your panel will be brought
up once it is selected through the MainInputPanel radio button selec-
tion process. The only trick here is to use the same String that was
used to create the new card. Also here is where an ID sequence number
for your algorithm can be obtained. Just increment the last one used
by one.

6. At this point you should be able to run a recompiled version of the
worksheet and be able to bring up your algorithm’s input panel.

7. Finally edit the ExecuteApproximation class to include your algorithm
to be executed when it is selected. Again use the same string that was

10



used to create your radio button in the MainInputPanel. I like to keep
the card and radio button strings the same.

8. Test your algorithm against know input/output data.

9. Check any boundary conditions. Make sure that only valid data is
excepted.

10. Congratulations you have contributed to the project. Thank you.

3.5 Documentation

Documenting code should always be done to help you and others understand
what is being performed. It is extremely helpful when later modifications
take place on the program. The NA WorkSheet has been idle several times
for extended periods. Each time I came back to continue work I was able to
relatively easily figure out what I had done and begin again. The templates
for developers in the docs section of the project provide a basis for what I
usually do for comments within code. The header comment at the beginning
of each class is required by the project. Please include this section in your
code which encompasses all the way down to and embodies the Revision
History. Put your own information as you deem necessary. The version
history provides a easy means for others and yourself to quickly see what
level of source code is being dealt with. If you edit an existing class please
update the revision history. I use the revision history comment as the basis
for the message log when committing to the CVS repository.

Each class that exists in the project has a short JavaDoc comment at
the beginning of the class to provide an inclusion list. The code at this time
does not embrace the JavaDoc standard. The rest of the commenting within
the code files generally are limited to each method and major blocks of code.
Rarely is there more unless a specific routine is doing something that is a
little complicated. If you get a feeling that what you are doing is a little
strange and you might not remember it in the future provide a note. The
actual approximation class that is implementing a specific algorithm should
be documented at the beginning of that algorithm with a reference to its
origin. Please see the sample algorithm class template.

Some other areas that provide a more organized readable code is the use
of indentation and line breaks. Each block of code should be indented. Line
breaks between methods help to highlight them. One other major difference

11



that you will recognize in my templates is the use of curly braces in blocks.
The left curl goes after the method, class, or block not on the same line.
The habit came from a requirement by a professor in a Pascal programming
class. Document/comment as you go, otherwise it just usually gets left by
the wayside. If you think that you do not have to comment than I guarantee
you that at some point in a programming career a lot of people are going
to be pissed off when they try to modify your code. Also no matter how
brilliant you are, age is going weaken that youthful mind and recollection is
going to diminish.

4 Summary

The developer guide has tried to provide a means to answer most of the
questions that may be asked by a new developer. The guide tries to gener-
ally cover the overall structure of the NA WorkSheet and how to go about
contributing to the project. Each individual will have there own preferences
to tools and techniques. This document just highlights one particular way
to get your source into the CVS repository to be shared by others. The
focus has taken a more manual approach than might be required. Many use
WinCvs to accomplish the task more efficiently. The Eclipse IDE also sup-
ports remote repositories for managing your code in a team. Templates have
been provided for the specific case of sharing an additional algorithm along
with integrating the approximation into the worksheet. As a developer you
should understand the basic concepts of CVS and be able to commit code.
All developers should form the habit of creating legible code with comments
that others can understand.

12


